
<Insert Picture Here>

Полезные метрики покрытия 
Практический опыт и немного теории

Александр (Шура) Ильин
JavaSE quality architect



What's this NOT about?

• Not about a particular code coverage tool
• Different tools for different needs

• Not about hoe to write tests to reach higher code 
coverage
• There are different techniques

• No data for the projects I am working on
• Sorry.



What's this about?

• Personal experience
• My
• Yours (depends on speaker abilities to speak fast)

• Using coverage as a metric
• What metrics to select



Disclaimer

• The views expressed on this presentation belong to 
the presenter and do not necessarily reflect the views 
of Oracle

• Докладчик работает в “продуктовой лавке” :)
• Ideas, approaches and conclusions described are 

coming from experience of the presenter



What's a metric

• A type of measurement user to gauge some 
quantifiable components.



What's a metric

• A type of measurement user to gauge some 
quantifiable components.

• Metrics also used to track progress toward a goal.



What's a metric

• A type of measurement user to gauge some 
quantifiable components.

• Metrics also used to track progress toward a goal.
• A goal must be SMART

• Simple (who, what, where, when, which, why)

• Measurable (has a metric)

• Attainable (the metric has a target value)

• Realistic (willing and able to work towards)

• Timely (results arrive on time to be used)



How do you test the application?



How do you test the application?

By tests



How do you test the application?

By tests

Metrics

• Number of tests
• Passrate
• Number of bugs
• Etc, etc, etc



How do you test the tests?



How do you test the tests?

Hm ….



How do you test the tests?

By … application?



What's the goal of testing?

• Prove the system working properly

Practically impossible
• Prove the system not working properly

Never ending process
• Verify conformance to requirements

Too generic



What's the goal of testing?

• Prove the system working properly

Practically impossible
• Prove the system not working properly

Never ending process
• Verify conformance to requirements

Too generic
• Money (not to loose money on poor quality)

Yep. I need my bills to be paid.
• Report quality

On time and accurately. Still, too abstract.



What's a quality?

Separate presentation.

No holy war today.



Two goals. * 

• Defect escape reduction
• Test coverage (different kinds off)

• All the rest is bullshit *
• Misleading
• Not to the point
• No target

(*) Honest opinion of the presenter



Two goals. * 

• Defect escape reduction
• Test coverage (different kinds off)

• All the rest is rubbish *
• Misleading
• Not to the point
• No target

(*) Honest opinion of the presenter



What's a bug escape metric?

Ratio of defects sneaked out unnoticed

# defects not found before release

# defects in the product
In theory:

# defects found after + # defects found before
Practical:

# defects found after release



What's a bug escape metric?

Ratio of defects sneaked out unnoticed

Perfect! Direct metric of quality of testing

# defects found after + # defects found before

# defects found after release



What's a bug escape metric?

Ratio of defects sneaked out unnoticed

Problem: coming too late!

Perfect! Direct metric of quality of testing

# defects found after + # defects found before

# defects found after release



Is defect escape a good metric?

• Simple (+.)

• Measurable (+)
• Attainable (?)
• Realistic

• Timely (-!)



What's test coverage?
A ratio of some numerable items “covered” in testing. 

# tested / # existing

Implementation coverage
• Code coverage

• Line, block
• Entry/exit
• Branch/predicate
• Path/sequence

• Race coverage
• Data coverage

Specification coverage
• Requirement
• Assertion
• API
• UI
• Data coverage

Assumes test logic is right



Code coverage

• Class
• Method (function)
• Block
• Line
• Branch (condition)/predicate
• Path (sequence)
• Entry/exit

Shows to what extent source code is covered



A) Improve test base
1.Measure coverage

2.Find uncovered code

3.Develop more tests

4.Goto 1.

Code coverage analysis – what for?

B) Find dead code
1.Find something uncovered

2.Try to develop tests

3.Fail

4.Go to developers

5.Argue

6.Argue

7.Argue

8.Create a bug

9.Dead code removed
C) Use as a metric



Is code coverage a good metric?

• Simple (+)

• Measurable (+)
• Attainable (?)
• Realistic

• Timely (+!)

so far ...



Block code coverage – what's the target?

100%? Unrealistic.

80%? Why not 78?

50%? What does it guarantee?



100% block/line coverage

• Does it mean that all bugs found?

Nope.



100% block/line coverage

• Does it mean that all bugs found?

Nope.

• Does it mean that all scenarios tested?

Nope.



100% block/line coverage

• Does it mean that all bugs found?

Nope.

• Does it mean that all scenarios tested?

Nope.

• What does it mean, then?

Nothing, really.



100% block/line coverage



Branch coverage helps?



Data coverage?



Block code coverage – what's the target?



... target comes from ROI



Is block/line coverage a good metric?

• Simple (+)

• Measurable (+)
• Attainable (-)
• Realistic

• Timely (+!)



Code coverage is very useful.
• Tie CC data to

• Code complexity

• More complicated code is – more thorough testing it needs

• Code stability

• Recently changed code needs to be tested better

• Bug density

• Is there a correlation 

• Static analysis tools

• To filter the false positives

• Use CC as
• Check-in criteria

• Commit only if tested

• Test selection

• Run only tests for changed code

• Hot spot detection

• Usually coverage also shows hit counts



What about 100% sequence coverage?

Does it guarantee full testing?



100% sequence coverage



100% sequence coverage

b



What about sequence coverage?

• 100% sequence coverage does not prove a code to 
be fully tested
• Libraries may have defects



100% sequence coverage



What about sequence coverage?

• 100% sequence coverage does not prove a code to 
be fully tested
• Libraries may have defects
• Branches could be incorrect

• 100% sequence + 100% predicate + 100% data 
+100% XYZ?
• No idea
• Have not seen a mathematical proof yet
• Does not matter



What else wrong with sequence coverage?

• Tools availability
• None for Java

• Expensive
• Execution
• Analysis

• Complicated
• Not all paths are valid
• Loops

• 100% likely not attainable
• number of paths is exponential to the number of branches



Is sequence coverage a good metric?

• Simple (+.)

• Measurable (+)
• Attainable (-.)
• Realistic

• Timely (+)



Coverage data is not free

• Do just as much as you can consume *
• Requires infrastructure work
• Requires some development
• Requires some analysis

(*) The rule of thumb



Coverage data is not free

• Do just as much as you can consume
• Requires infrastructure work
• Requires some development
• Requires some analysis

• Do just a little bit more than you can consume *
• Otherwise how do you know how much you can consume?

(*) The rule of thumb



So, is there a good coverage metric, then?

• Manageable amount of work
• Obtain
• Analyze
• Improve

• Clear target
• Explainable
• Verifiable

Attainability seems to be the most trouble so far



Specification coverage

• Requirements

• Assertions

• Public API

• UI

• Custom coverage metrics



Assertions

public final void wait(long timeout, int nanos) 
    throws InterruptedException

    Causes current thread to wait until another 
thread invokes the notify() method or the 
notifyAll() method for this object, or some 
other thread interrupts the current thread, or a 
certain amount of real time has elapsed.



Assertions

• Mark all the assertions with ID
• Mark up the specification itself
• Create a separate storage

• Develop tests
• An assertion deserves a few
• A test could cover a few

• Mark tests by assertion IDs
• When next specification version is released

• Compare assertions with a previous version
• Verify all tests for changes assertions
• Scan for new assertions
• Develop new tests



Requirements

Same as assertions
• Number the requirements
• Mark the tests
• Validate all tests when requirements change



Public API*

Is a set of program elements suggested for usage by 
public documentation.

For example: all functions and variables which are 
described in documentation.

For a Java library: all public and protected methods and 
fields mentioned in the library javadoc.

For Java SDK: … of all public classes in java and javax 
packages.

(*) Only applicable for a library or a SDK



Public API



True Public API (c)

Is a set of program elements which could be accessed 
directly by a library user

Public API 

+

all extensions of public API in non-public classes



True public API example

ArrayList.java

My code



(True) Public API

• Is obtainable from code coverage
• May require some work on top of existing CC tools

True Public API

• Does require some work on top of an existing CC tools
• Emma, JCov



UI coverage

• % dialogs inspected
• % menus pushed
• % buttons pushed
• % text fields was entered a value in
• etc.



UI coverage

• In some cases obtainable from code coverage (works 
well for factory methods)
• Action coverage: javax.swing.Action implementations

• If not
• “Instrument” the application

• Adding test hooks
• Using event queue

•  Obtain a “template” somehow else



Are these metrics attainable?

May be not in the beginning



Are these metrics attainable?

For every product to be claimed to be tested well, the 
target value is ... 



Are these metrics attainable?

For every product to be claimed to be tested well, the 
target value is ... 

100%



Why 100%?

• Every requirement must be tested by at least one test
• Every statement in spec must be exercised at least 

once
• Every method in public API must be called at least 

once
• Every button in a UI needs to be pushed at least once

For exceptions there are exclude lists.



So, are these metrics good?

• Simple (+)

• Measurable (+)
• Attainable (+)
• Realistic

• Timely (+)



But wait … what is the point?

• What does 100% public API coverage means?

• UI coverage?

• Specification coverage?

• Requirements coverage?



But wait … what is the point?

• What does 100% public API coverage means?

Nothing.
• UI coverage?

• Specification coverage?

• Requirements coverage?



But wait … what is the point?

• What does 100% public API coverage means?

Nothing.
• UI coverage?

Not that we are done with testing.
• Specification coverage?

• Requirements coverage?



But wait … what is the point?

• What does 100% public API coverage means?

Nothing.
• UI coverage?

Not that we are done with testing.
• Specification coverage?

Not anywhere near with been done.
• Requirements coverage?



But wait … what is the point?

• What does 100% public API coverage means?

Nothing.
• UI coverage?

Not that we are done with testing.
• Specification coverage?

Not anywhere near with been done.
• Requirements coverage?

Well … at least we touched each and every of'm



But wait … what is the point?

• What does 100% public API coverage means?

Nothing.
• UI coverage?

Not that we are done with testing.
• Specification coverage?

Not anywhere near with been done.
• Requirements coverage?

Well … at least we touched each and every of'm

These metrics are required but not sufficient.



More such metrics

• Property coverage
• Property is a field with a setter and getter

• UML element coverage
• In UML diagram

• Language element coverage
• Expression Language

• Make your own.



Summary

No perfect coverage metric

• Implementation based
• target value comes from ROI
• too heavy
• yet do not prove anything

• Specification based
• Are not thorough enough



Summary

On the bright side, any of them could be useful 

• Test base improvement
• Finding

• Dead code
• Untestable assertions
• Unreachable UI
• Etc.



Comments?



Alexandre (Shura) Iline

Oracle

Quality architect

Java SE SQE group

alexandre.iline@oracle.com


	Title of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Base Content Slide
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Example of Title Extending to Two Lines
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

